style> #wennei .showanswer{font-size: 14px;margin-bottom: 10px} .g9{font-size: 14px;}
隐藏菜单
id_7广告位-99%*49
搜索
上海高二数学上知识点_高二数学的知识点总结
人阅读
id_1广告位-95%*60

数学是我们学习中非常重要的一门课程,数学与我们的生活密切相关, 所以我们一定要耐心的去将数学知识学好。下面是小编整理收集的,欢迎阅读参考!

1

排列组合公式/排列组合计算公式

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法."排列"

把5本书分给3个人,有几种分法"组合"

1.排列及计算公式

从n个不同元素中,任取m「m≤n」个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m「m≤n」个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p「n,m」表示.

p「n,m」=n「n-1」「n-2」……「n-m+1」=n!/「n-m」!「规定0!=1」.

2.组合及计算公式

从n个不同元素中,任取m「m≤n」个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m「m≤n」个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c「n,m」表示.

c「n,m」=p「n,m」/m!=n!/「「n-m」!*m!」;c「n,m」=c「n,n-m」;

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p「n,r」/r=n!/r「n-r」!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/「n1!*n2!*...*nk!」.

k类元素,每类的个数无限,从中取出m个元素的组合数为c「m+k-1,m」.

排列「Pnm「n为下标,m为上标」」

Pnm=n×「n-1」....「n-m+1」;Pnm=n!/「n-m」!「注:!是阶乘符号」;Pnn「两个n分别为上标和下标」=n!;0!=1;Pn1「n为下标1为上标」=n

组合「Cnm「n为下标,m为上标」」

Cnm=Pnm/Pmm;Cnm=n!/m!「n-m」!;Cnn「两个n分别为上标和下标」=1;Cn1「n为下标1为上标」=n;Cnm=Cnn-m

20xx-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的'元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1

从N倒数r个,表达式应该为n*「n-1」*「n-2」..「n-r+1」;

因为从n到「n-r+1」个数为n-「n-r+1」=r

举例:

Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P「3,9」=9*8*7,「从9倒数3个的乘积」

Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C「3,9」=9*8*7/3*2*1

排列、组合的概念和公式典型例题分析

例1设有3名学生和4个课外小组.「1」每名学生都只参加一个课外小组;「2」每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同同方法?

解「1」由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

「2」由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.

点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

∴符合题意的不同排法共有9种.

点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

例3判断下列问题是排列问题还是组合问题?并计算出结果.

「1」高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

「2」高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

「3」有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

「4」有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

分析「1」①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

「1」①是排列问题,共用了封信;②是组合问题,共需握手「次」.

「2」①是排列问题,共有「种」不同的选法;②是组合问题,共有种不同的选法.

「3」①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

「4」①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

例4证明.

证明左式

右式.

∴等式成立.

点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.

例5化简.

解法一原式

解法二原式

点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.

例6解方程:「1」;「2」.

解「1」原方程

解得.

「2」原方程可变为

∵,,

∴原方程可化为.

即,解得

第六章排列组合、二项式定理

一、考纲要求

1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.

2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.

3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.

二、知识结构

三、知识点、能力点提示

「一」加法原理乘法原理

说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.

2

在中国古代把数学叫算术,又称算学,最后才改为数学。

1.任意角

「1」角的分类:

①按旋转方向不同分为正角、负角、零角.

②按终边位置不同分为象限角和轴线角.

「2」终边相同的角:

终边与角相同的角可写成+k360「kZ」.

「3」弧度制:

①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.

②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径.

③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.

④弧度与角度的换算:360弧度;180弧度.

⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.

2.任意角的`三角函数

「1」任意角的三角函数定义:

设是一个任意角,角的终边与单位圆交于点P「x,y」,那么角的正弦、余弦、正切分别是:sin =y,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.

「2」三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.

3.三角函数线

设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为「cos_,sin_」,即P「cos_,sin_」,其中cos =OM,sin =MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan =AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.

3

一、事件

1.在条件SS的必然事件.

2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.

3.在条件SS的随机事件.

二、概率和频率

1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.

2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA

nA为事件A出现的频数,称事件A出现的比例fn「A」=为事件A出现的频率.

3.对于给定的随机事件A,由于事件A发生的频率fn「A」P「A」,P「A」.

三、事件的关系与运算

四、概率的`几个基本性质

1.概率的取值范围:

2.必然事件的概率P「E」=3.不可能事件的概率P「F」=

4.概率的加法公式:

如果事件A与事件B互斥,则P「AB」=P「A」+P「B」.

5.对立事件的概率:

若事件A与事件B互为对立事件,则AB为必然事件.P「AB」=1,P「A」=1-P「B」.

4

导数: 导数的意义-导数公式-导数应用「极值最值问题、曲线切线问题」

1、导数的定义: 在点 处的导数记作 .

2. 导数的`几何物理意义:曲线 在点 处切线的斜率

①k=f/「x0」表示过曲线y=f「x」上P「x0,f「x0」」切线斜率。V=s/「t」 表示即时速度。a=v/「t」 表示加速度。

3.常见函数的导数公式: ① ;② ;③ ;

⑤ ;⑥ ;⑦ ;⑧ 。

4.导数的四则运算法则:

5.导数的应用:

「1」利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

「2」求极值的步骤:

①求导数 ;

②求方程 的根;

③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

「3」求可导函数最大值与最小值的步骤:

ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

5

「1」必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

「2」不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

「3」确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

「4」随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

「5」频数与频率:在相同的.条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn「A」=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn「A」稳定在某个常数上,把这个常数记作P「A」,称为事件A的概率。

「6」频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

然说难度比较大,我建议考生,采取分部得分整个试

6

已知函数有零点(方程有根)求参数取值常用的'方法

1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。

3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

7

1.1柱、锥、台、球的结构特征

1.2空间几何体的三视图和直观图

11三视图:

正视图:从前往后

侧视图:从左往右

俯视图:从上往下

22画三视图的原则:

长对齐、高对齐、宽相等

33直观图:斜二测画法

44斜二测画法的步骤:

「1」.平行于坐标轴的线依然平行于坐标轴;

「2」.平行于y轴的线长度变半,平行于x,z轴的线长度不变;

「3」.画法要写好。

5用斜二测画法画出长方体的步骤:「1」画轴「2」画底面「3」画侧棱「4」成图

1.3空间几何体的表面积与体积

「一」空间几何体的表面积

1棱柱、棱锥的表面积:各个面面积之和

2圆柱的表面积3圆锥的表面积

4圆台的表面积

5球的表面积

「二」空间几何体的体积

1柱体的体积

2锥体的体积

3台体的体积

4球体的体积

高二数学必修二知识点:直线与平面的位置关系

2.1空间点、直线、平面之间的位置关系

2.1.1

1平面含义:平面是无限延展的

2平面的画法及表示

「1」平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长「如图」

「2」平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

3三个公理:

「1」公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内

符号表示为

A∈L

B∈L=>Lα

A∈α

B∈α

高二数学的知识点总结

公理1作用:判断直线是否在平面内

「2」公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A、B、C三点不共线=>有且只有一个平面α,

使A∈α、B∈α、C∈α。

公理2作用:确定一个平面的依据。

「3」公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P∈α∩β=>α∩β=L,且P∈L

公理3作用:判定两个平面是否相交的依据

2.1.2空间中直线与直线之间的位置关系

1空间的两条直线有如下三种关系:

共面直线

相交直线:同一平面内,有且只有一个公共点;

平行直线:同一平面内,没有公共点;

异面直线:不同在任何一个平面内,没有公共点。

2公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线

a∥b

c∥b

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

4注意点:

①a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

②两条异面直线所成的角θ∈「0,」;

③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

④两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的.角。

2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系

1、直线与平面有三种位置关系:

「1」直线在平面内——有无数个公共点

「2」直线与平面相交——有且只有一个公共点

「3」直线在平面平行——没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示

aαa∩α=Aa∥α

2.2.直线、平面平行的判定及其性质

2.2.1直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:

实习生劳动合同页面需要盖章吗

bβ=>a∥α

a∥b

2.2.2平面与平面平行的判定

1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:

a∩b=Pβ∥α

a∥α

b∥α

2、判断两平面平行的方法有三种:

「1」用定义;

「2」判定定理;

「3」垂直于同一条直线的两个平面平行。

2.2.3—2.2.4直线与平面、平面与平面平行的性质

1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:

a∥α

aβa∥b

α∩β=b

作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:

α∥β

α∩γ=aa∥b

β∩γ=b

作用:可以由平面与平面平行得出直线与直线平行

2.3直线、平面垂直的判定及其性质

2.3.1直线与平面垂直的判定

1、定义

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。直线与平面垂直时,它们公共点P叫做垂足。

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点:a」定理中的“两条相交直线”这一条件不可忽视;

b」定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

2、二面角的记法:二面角α-l-β或α-AB-β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3—2.3.4直线与平面、平面与平面垂直的性质

1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

8

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:

一个是划减与求值。

第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的'性质。

第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面:

第一……等可能的概率。

第二………事件。

第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

9

排列组合

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法."排列"

把5本书分给3个人,有几种分法"组合"

1.排列及计算公式

从n个不同元素中,任取m「m≤n」个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m「m≤n」个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p「n,m」表示.

p「n,m」=n「n-1」「n-2」……「n-m+1」=n!/「n-m」!「规定0!=1」.

2.组合及计算公式

从n个不同元素中,任取m「m≤n」个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m「m≤n」个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c「n,m」表示.

c「n,m」=p「n,m」/m!=n!/「「n-m」!_!」;c「n,m」=c「n,n-m」;

3.其他排列与组合公式

从n个元素中取出r个元素的`循环排列数=p「n,r」/r=n!/r「n-r」!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/「n1!_2!_.._k!」.

k类元素,每类的个数无限,从中取出m个元素的组合数为c「m+k-1,m」.

排列「Pnm「n为下标,m为上标」」

Pnm=n×「n-1」....「n-m+1」;Pnm=n!/「n-m」!「注:!是阶乘符号」;Pnn「两个n分别为上标和下标」=n!;0!=1;Pn1「n为下标1为上标」=n

组合「Cnm「n为下标,m为上标」」

Cnm=Pnm/Pmm;Cnm=n!/m!「n-m」!;Cnn「两个n分别为上标和下标」=1;Cn1「n为下标1为上标」=n;Cnm=Cnn-m

20xx-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

从N倒数r个,表达式应该为n_n-1」_n-2」..「n-r+1」;

因为从n到「n-r+1」个数为n-「n-r+1」=r

10

用样本的数字特征估计总体的数字特征

1、本均值:

2、样本标准差:

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

4.「1」如果把一组数据中的每一个数据都加上或减去同一个共同的'常数,标准差不变

「2」如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍

「3」一组数据中的值和最小值对标准差的影响,区间的应用;

“去掉一个分,去掉一个最低分”中的科学道理

11

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向.像这样,具有方向的线段叫做有向线段.记作:.

2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.

3.向量的定义:「1」具有大小和方向的量叫做向量.向量有两个要素:大小和方向.

「2」向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.

4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度「或模」,记作||.

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.

8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.

9.单位向量:长度等于1的向量叫做单位向量.

10.向量的加法运算:

「1」向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||.

13.数乘向量的.定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.

向量的长度与方向规定为:「1」||=|

「2」当0时,与方向相同;当0时,与方向相反.

「3」当=0时,当=时,=.

14.数乘向量的运算律:「1」」= 「结合律」

「2」「+」 =+「第一分配律」「3」「+」=+.「第二分配律」

15.平行向量基本定理

以爱国为主题的演讲稿

如果向量,则//的充分必要条件是,存在唯一的实数,使得=.

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作.

=||,即==「,」

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=「+」.

18.平面向量的直角坐标运算:如果=「a1,a2」,=「b1,b2」,则

+=「a1+b1,a2+b2」;-=「a1-b1,a2-b2」;=「a1,a2」.

19.利用两点表示向量:如果A「x1,y1」,B「x2,y2」,则=「x2-x1,y2-y1」.

20.两向量相等和平行的条件:若=「a1,a2」,=「b1,b2」 ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =.

21.向量的长度公式:若=「a1,a2」,则||=.

22.平面上两点间的距离公式:若A「x1,y1」,B「x2,y2」,则||=.

23.中点公式

若点A「x1,y1」,点B「x2,y2」,点M「x,y」是线段AB的中点,则x=,y= .

24.重心公式

在△ABC中,若A「x1,y1」,B「x2,y2」,A「x3,y3」,,△ABC的重心为G「x,y」,则

x=,y=

25.(1」两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作.

「3」向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.

「4」内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

「1」交换率

「2」数乘结合律

「3」分配律

「4」不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用:

12

1.万能公式令tan「a/2」=t sina=2t/「1+t^2」 cosa=「1-t^2」/「1+t^2」 tana=2t/「1-t^2」

2.辅助角公式 asint+bcost=「a^2+b^2」^「1/2」sin「t+r」 cosr=a/[「a^2+b^2」^「1/2」] sinr=b/[「a^2+b^2」^「1/2」] tanr=b/a

3.三倍角公式 sin「3a」=3sina-4「sina」^3 cos「3a」=4「cosa」^3-3cosa tan「3a」=[3tana-「tana」^3]/[1-3「tana^2」] sina*cosb=[sin「a+b」+sin「a-b」]/2cosa*sinb=[sin「a+b」-sin「a-b」]/2 cosa*cosb=[cos「a+b」+cos「a-b」]/2 sina*sinb=-[cos「a+b」-cos「a-b」]/2 sina+sinb=2sin[「a+b」/2]cos[「a-b」/2]sina-sinb=2sin[「a-b」/2]cos[「a+b」/2] cosa+cosb=2cos[「a+b」/2]cos[「a-b」/2] cosa-cosb=-2sin[「a+b」/2]sin[「a-b」/2] 向量公式: 1.单位向量:单位向量a0=向量a/|向量a| 2.P「x,y」 那么 向量OP=x 向量i+y 向量j |向量OP|=根号「x 平方+y 平方」 3.P1「x1,y1」 P2「x2,y2」 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根号[「x2-x1」平方+「y2-y1」平方]

4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| 「x1x2+y1y2」 根号「x1平方+y1 平方」*根号「x2 平方+y2 平方」

5.空间向量:同上推论 「提示:向量a={x,y,z}」

6.充要条件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2

7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =「向量a向量b」平方

13

一、集合、简易逻辑(14课时,8个)

1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)

1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)

1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;2.直线方程的'点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)

1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率(12课时,5个)

1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

十三、极限(12课时,6个)

1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。

十四、导数(18课时,8个)

1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。

十五、复数(4课时,4个)

1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

14

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=「x+x,y+y」。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:「a+b」+c=a+「b+c」。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=「x,y」 b=「x,y」 则 a-b=「x-x,y-y」.

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的'几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向「λ>0」或反方向「λ<0」上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向「λ>0」或反方向「λ<0」上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:「λa」·b=λ「a·b」=「a·λb」。

向量对于数的分配律「第一分配律」:「λ+μ」a=λa+μa.

数对于向量的分配律「第二分配律」:λ「a+b」=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积「内积、点积」是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x+y·y。

向量的数量积的运算率

a·b=b·a「交换率」;

「a+b」·c=a·c+b·c「分配率」;

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

15

●不等式

1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!

2、的解集是(1,3),那么的解集是什么?

3、两类恒成立问题图象法——恒成立,则=?

★★★★分离变量法——在[1,3]恒成立,则=?(必考题)

4、线性规划问题

(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界

(2)目标函数改写:(注意分析截距与z的关系)

(3)平行直线系去画

5、基本不等式的形式和变形形式

如a,b为正数,a,b满足,则ab的范围是

6、运用基本不等式求最值要注意:一正二定三相等!

如的最小值是的最小值(不要忘记交代是什么时候取到=!!)

一个非常重要的函数——对勾函数的图象是什么?

运用对勾函数来处理下面问题的最小值是

7、★★两种题型:

和——倒数和(1的代换),如x,y为正数,且,求的`最小值?

和——积(直接用基本不等式),如x,y为正数,,则的范围是?

不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,,则的范围是?

16

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本「n≤N」,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:

「1」用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为

「2」简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

「3」简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

「4」简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

简单抽样常用方法:

「1」抽签法:先将总体中的所有个体「共有N个」编号「号码可从1到N」,并把号码写在形状、大小相同的号签上「号签可用小球、卡片、纸条等制作」,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.「2」随机数表法:随机数表抽样“三步曲”:第一步,将总体中的`个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:

相关高中数学知识点:系统抽样

系统抽样的概念:

当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。

系统抽样的步骤:

「1」采用随机方式将总体中的个体编号;

「2」将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即

=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足是整数;

「3」在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;

「4」依次将l加上ik,i=1,2,…,「n-1」,得到其余被抽取的个体的编号,从而得到整个样本。

相关高中数学知识点:分层抽样

分层抽样:

当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。

利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。

不放回抽样和放回抽样:

在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

随机抽样、系统抽样、分层抽样都是不放回抽样

分层抽样的特点:

「1」分层抽样适用于差异明显的几部分组成的情况;

「2」在每一层进行抽样时,在采用简单随机抽样或系统抽样;

「3」分层抽样充分利用已掌握的信息,使样具有良好的代表性;

「4」分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。

17

概率性质与公式

「1」加法公式:P「A+B」=p「A」+P「B」-P「AB」,特别地,如果A与B互不相容,则P「A+B」=P「A」+P「B」;

「2」差:P「A-B」=P「A」-P「AB」,特别地,如果B包含于A,则P「A-B」=P「A」-P「B」;

「3」乘法公式:P「AB」=P「A」P「B|A」或P「AB」=P「A|B」P「B」,特别地,如果A与B相互独立,则P「AB」=P「A」P「B」;

「4」全概率公式:P「B」=∑P「Ai」P「B|Ai」.它是由因求果,

贝叶斯公式:P「Aj|B」=P「Aj」P「B|Aj」/∑P「Ai」P「B|Ai」.它是由果索因;

如果一个事件B可以在多种情形「原因」A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

「5」二项概率公式:Pn「k」=C「n,k」p^k「1-p」^「n-k」,k=0,1,2,....,n.当一个问题可以看成n重贝努力试验「三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立」时,要考虑二项概率公式.

高二数学的.知识点总结18

  考点一:向量的概念、向量的基本定理

【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

考点二:向量的运算

【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的.坐标运算,有时也会与其它内容相结合。

  考点三:定比分点

【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

  考点四:向量与三角函数的综合问题

【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

考点五:平面向量与函数问题的交汇

【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

【命题规律】命题多以解答题为主,属中档题。

  考点六:平面向量在平面几何中的应用

【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

【命题规律】命题多以解答题为主,属中等偏难的试题。

19

一、集合、简易逻辑「14课时,8个」1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.

二、函数「30课时,12个」1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.

三、数列「12课时,5个」1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.

四、三角函数「46课时17个」1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.

五、平面向量「12课时,8个」1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.

六、不等式「22课时,5个」1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.

七、直线和圆的方程「22课时,12个」1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.

八、圆锥曲线「18课时,7个」1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、「B」直线、平面、简单何体「36课时,28个」1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.

十、排列、组合、二项式定理「18课时,8个」1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.

十一、概率「12课时,5个」1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ「24个」

十二、概率与统计「14课时,6个」1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.

十三、极限「12课时,6个」1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.

十四、导数「18课时,8个」1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值.

十五、复数「4课时,4个」1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。几何不等式。简单的'等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程「多项式」根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。

高二数学的知识点总结20

分层抽样

先将总体中的所有单位按照某种特征或标志「性别、年龄等」划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

「1」以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

「2」以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

「3」以那些有明显分层区分的变量作为分层变量。

分层的比例问题

「1」按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

「2」不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

「1」定义:

对于函数y=f「x」「x∈D」,把使f「x」=0成立的实数x叫做函数y=f「x」「x∈D」的零点。

「2」函数的零点与相应方程的'根、函数的图象与x轴交点间的关系:

方程f「x」=0有实数根?函数y=f「x」的图象与x轴有交点?函数y=f「x」有零点。

「3」函数零点的判定「零点存在性定理」:

如果函数y=f「x」在区间[a,b]上的图象是连续不断的一条曲线,并且有f「a」·f「b」<0,那么,函数y=f「x」在区间「a,b」内有零点,即存在c∈「a,b」,使得f「c」=0,这个c也就是方程f「x」=0的根。

二二次函数y=ax2+bx+c「a>0」的图象与零点的关系

三二分法

对于在区间[a,b]上连续不断且f「a」·f「b」<0的函数y=f「x」,通过不断地把函数f「x」的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

1、函数的零点不是点:

函数y=f「x」的零点就是方程f「x」=0的实数根,也就是函数y=f「x」的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。

2、对函数零点存在的判断中,必须强调:

「1」、f「x」在[a,b]上连续;

「2」、f「a」·f「b」<0;

「3」、在「a,b」内存在零点。

这是零点存在的一个充分条件,但不必要。

3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。

利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f「x」在区间[a,b]上的图象是否连续不断,再看是否有f「a」·f「b」<0.若有,则函数y=f「x」在区间「a,b」内必有零点。

四判断函数零点个数的常用方法

1、解方程法:

令f「x」=0,如果能求出解,则有几个解就有几个零点。

2、零点存在性定理法:

利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f「a」·f「b」<0,还必须结合函数的图象与性质「如单调性、奇偶性、周期性、对称性」才能确定函数有多少个零点。

3、数形结合法:

转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

已知函数有零点「方程有根」求参数取值常用的方法

1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。

3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

  推荐阅读

  《用方向和距离确定位置》教学反思_用数对确定位置教学反思简短

  期中考试总结学生发言稿_期中考试总结发言稿视频

  关于双减的问答_双减的心得

查看更多相似文章
  • id_5广告位-99%*100
发表评论
畅言评论-后台-模板-公共模板变量-评论模板中修改
  • id_2广告位-99%*100
  • id_3广告位-99%*100
  • id_3广告位-99%*100

最新文章

推荐阅读
你可能感兴趣

©Copyright ©2007-2016 www.zizaicun.com (万聚范文万) All Rights Reserved 合作QQ:2775252566 滇ICP备2024035790号-3   

网上开店
淘宝运营
活动大促
其他

©Copyright ©2007-2016 www.zizaicun.com (万聚范文万) All Rights Reserved 合作QQ:2775252566 滇ICP备2024035790号-3